Placement and Routing for Three-Dimensional FPGAs *

Michael J. Alexander, James P. Cohoon, Jared L. Colflesh, John Karro, Edward L. Peters and Gabriel Robins

Department of Computer Science, University of Virginia, Charlottesville, VA 22903

Abstract

We explore physical layout for a three-dimensional (3D) FPGA architecture. For placement, we introduce a topdown partitioning technique based on rectilinear Steiner trees; we then employ a one-step router to produce the final layout. Experimental results indicate that our approach produces effective 3D layouts, using considerably shorter average interconnect distance than is achievable with conventional 2D FPGA's of comparable size.

1 Introduction

A field-programmable gate array (FPGA) is a flexible and reusable design alternative to custom integrated circuits. Using FPGAs, digital designs can be quickly implemented and emulated in hardware, which enables a faster, more economical design cycle [8]. The flexible logic and connection resources of FPGAs allow different designs to be implemented on the same hardware. However, this versatility comes at the expense of a substantial performance penalty due primarily to signal delay through the programmable routing switches. This delay can account for over 70% of the clock cycle period [19, 25].

This paper explores physical-design issues for a new three-dimensional (3D) FPGA architecture, with a focus on reducing the interconnect delay. The increased number of switch block neighbors in our new architecture (i.e., 6 in 3D vs. 4 in 2D) affords greater flexibility during placement and routing, while shorter average interconnect distance (i.e., $O(n^{\frac{1}{3}})$ for an *n*-block 3D FPGA vs. $O(n^{\frac{1}{2}})$ in 2D) implies shorter signal propagation delays. In order to realize such potential benefits, we must develop effective physical-design techniques which exploit these properties.

The physical design tools we developed for 3D FPGAs build on those proposed in [4], and adapt these technique for the new architecture. Our placement algorithm employs a top-down approach: the FPGA is partitioned into several cubic sections, logic blocks are arranged to minimize the number of nets crossing partition boundaries, and each partition is similarly processed in a recursive manner. We use a one-step graph-based router which employs a Steiner-based heuristic to construct the overall routing solution.

Our benchmarks indicate that our three-dimensional layout algorithms generate 23% average savings in total interconnect length over traditional 2-OPT -based placements. In addition, our three-dimensional layout reduces average interconnect distance by 14% and average maximum source-sink path length by 26%, with respect to 2-OPT -based placements.

The remainder of the paper is organized as follows: In Section 2 we discuss our 2D and 3D FPGA architecture models, and address some of the physical constraints in constructing our 3D variant. In Section 3 we discuss performance gains expected for the 3D architecture. Sections 4 and 5 present our physical layout techniques for 3D placement and routing, respectively. Section 6 contains experimental results for 3D FPGAs and compares these results with those achievable for 2D FPGAs, and we conclude in Section 7.

2 The FPGA Architecture

Field-programmable gate arrays are reprogrammable chips capable of implementing arbitrary design logic. The basic 2D FPGA architecture consists of a symmetrical array of user-configurable logic blocks. Running through the *channels* between the rows and columns of logic blocks is a network of *channel segments*, linked together by programmable *switch blocks* [8] (Figure 1). During customization, configuration data is downloaded onto an FPGA, specifying which programmable switches are to be made active (i.e., programmed "ON"). This process causes each *net* (i.e., a set of logic-block input/output pins) to be properly interconnected.

Our 3D FPGA architecture [2] is a generalization of the basic 2D model, in which each switch block has six immediate neighbors (Figure 2(a)), as opposed to four in 2D. Three-dimensional switch blocks are analogous to their two-dimensional counterparts; they enable each channel segment to connect to some subset of the channel segments incident on the other five faces of the 3D switch block (Figure 2(b)).

Although the usable-gate count of FPGAs has been steadily increasing, the number of usable gates in FP-GAs is significantly less than in other design styles (mask-

^{*}Professor Cohoon is supported by NSF grants CCR-9224789 and MIP-9107717. Professor Robins is supported by NSF Young Investigator Award MIP-9457412 and by a Packard Foundation Fellowship. Our benchmarks and additional related papers may be found at WWW URL http://www.cs.virginia.edu/~vlsicad/

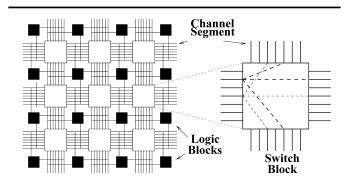


Figure 1: Two-dimmensional FPGA architecture.

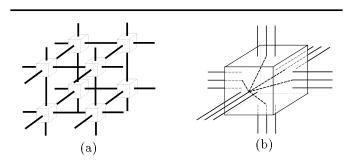


Figure 2: (a) Arrangement of switch blocks in 3D FPGA, and (b) detail of 3D switch block. Dark lines in (a) denote channels containing parallel channel segments.

programmed gate arrays, semi- and full custom ICs). This reduction in gate count is an inevitable consequence of the additional chip area dedicated to programmable routing switches and SRAM-based configuration data for these switches [24]. More recent FPGA architectures [27] strive to increase usable-gate-counts by reducing the number of programmable switches.

Three-dimensional VLSI has recently begun to attract increased attention. The implications of threedimensional abutment of individual transistors has been studied in [16]. Issues in vertical integration have been investigated in [1], with a focus on "silicon-on-insulator" techniques. In order to reduce delay between individual FPGAs, [11] proposed adding a surrounding programmable interconnection frame to individual die, using an MCM substrate for interconnections between frames. An alternative approach investigates the use of optical interconnect to construct multi-layered FPGAs [10]. I/O for individual FPGA chips was recently enhanced by using solder bumps distributed across the FPGA die [26].

The three-dimensional FPGA model poses a number of new challenges in the area of heat dissipation. Higher operating temperatures can lead to less reliable operation (e.g., heat stress can induce faults). A number of MCM thermal-dissipation techniques (e.g., thermal bumps and pillars [9], thermal gels [7], etc.) may also be applicable to 3D FPGAs. Chip-size packages [23, 28] are a relatively new packaging technology which results in a package typically only 10% larger than the bare die itself.

One such package consists of a thin epoxy coating, which allows bonding pads to be placed directly over the die surface. An important benefit of chip-sized packages is the reduction of thermal stress by physical buffering of the die. A second motivation for using chip-sized packages rather than bare dies is the known-good-die problem: compared to packaged die, testing of bare dies is costly as well as time-consuming. Chip-size packages, which are essentially testable dies, can dramatically reduce this problem [14].

3 Reducing Interconnect Length

In this section, we explore analytically both the expected interconnect length and the required number of programmable switches. Channel segments on an FPGA are linked together with programmable switches. Under our 2D and 3D architecture models, reducing the interconnect length also reduces the number of programmable switches encountered along the traversed interconnect (which further lowers the interconnect delay).

Consider two FPGA architectures, each having n switch blocks, arranged in a 2D grid and in a 3D grid (Figure 2(a)). The expected distance between two uniformly distributed points in the unit interval is $\frac{1}{3}$, and therefore the expected Manhattan distances between two uniformly distributed points in the unit square and unit cube are $\frac{2}{3}$ and $\frac{3}{3} = 1$, respectively. Thus, the expected interconnect length for a two-pin net in an FPGA of n switch blocks, is $\frac{2}{3} \cdot n^{\frac{1}{2}}$ and $n^{\frac{1}{3}}$ in 2D and 3D, respectively.

Equating the average interconnect length values in the different architectures and solving for a break-even value of n indicates that the average interconnect length is expected to be shorter in 3D than in 2D when $n \ge 12$. Because typical values of n in existing FPGA parts already far surpass this value, we can expect 3D interconnect lengths to be shorter than their 2D counterparts. Currently available parts contain over 500 switch blocks [27]; for n = 525, the expected average interconnect length in three dimensions is less than half its value in two dimensions.

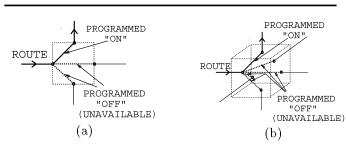


Figure 3: (a) 2D switch block with fanout 3, and (b) 3D switch block with fanout 5.

A popular 2D switch-block architecture [27] allows each incoming channel segment to connect to a single segment on the other three sides, providing a fanout of $F_{s,2D} = 3$. Our 3D architecture generalizes this switch-block scheme to three dimensions, resulting in a fanout of $F_{s,3D} = 5$. When a route passes through a switch block, all of the fanout channel segments (either three or five) become unavailable to subsequent nets; one or more of the fanout segments is committed to the route by being programmed "ON" to make the connection, while the remaining fanout segments become unusable (they *must* be programmed "OFF" to ensure that subsequent nets are electrically disjoint (Figure 3) from the current net). Thus, while interconnections in the 3D configuration are shorter, they commit more switching hardware per unit length. This motivates a more refined analysis as follows:

Thus, an average net is expected to use fewer switching resources when routed in three dimensions for $n \geq 244$ switch blocks (this size range applies to most currently manufactured parts). Hardware requirements remain greater in three dimensions: however, if channel widths can be reduced sufficiently by going to three dimensions, then identical circuits may be implemented with less overall hardware using a three-dimensional FPGA part.

4 Three-Dimensional FPGA Placement

FPGA layout is generally performed in three phases: (1) technology mapping, (2) placement, and (3) routing. During technology-mapping, the design logic is partitioned into small "units", each capable of being implemented by an individual logic block. During placement, these units are each assigned to specific logic blocks on the FPGA. Finally, during routing, nets are electrically interconnected using the available routing resources.

Minimizing signal delay is an important consideration during these physical layout phases. In order to minimize delay for each net, source-sink path lengths should be minimized. To minimize the FPGA size required to implement a design (or equivalently, to insure that a given piece of the design fits onto a single FPGA), we must also minimize the maximum number of channel segments assigned to nets over all channels (this is commonly referred to as reducing *congestion*).

Traditionally, these phases of layout have been considered independently and performed sequentially. Since the quality of the results of any one phase depends on results from earlier phases, it is beneficial for each phase to consider its effects on subsequent phases. A placement technique called Mondrian was designed to specifically consider the effects of placement on routing for 2D FPGAs [4] [13]. Here we generalize this method to three dimensions.

Our 3D FPGA placement algorithm uses a recursive geometric technique called *thumbnail partitioning*, which decomposes the FPGA area into an $m \times n \times r$ grid. In our case, m = n = 3 (and r = 1) for a standard twodimensional FPGA, and m = n = r = 2 for the threedimensional FPGA shown in Figure 4.

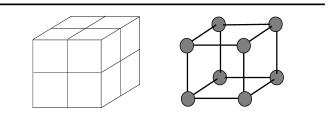


Figure 4: (a) Partition template with m = n = r = 2, and (b) partitioning graph where partition-template regions correspond to nodes.

The placement phase overlays the FPGA with a partitioning template, partitioning the overall design logic into $m \cdot n \cdot r$ regions. Cut-lines of the template pass through switch blocks, so each logic block lies entirely within a single region of the partitioning template. The distribution of logic blocks among regions of the partitioning template is then improved using simulated annealing [20], where a move consists of swapping pairs of logic blocks from different regions of the partitioning template, with the objective being minimizing total interconnect length over all nets.

For each net, we consider the set of partitions in which that net has been placed, and we calculate the minimum rectilinear Steiner tree connecting these points (i.e., the thumbnail). An important measure of the quality of a placement and global routing is maximum congestion, which in our case is the number of thumbnail edges crossing any given cut-line. Once logic blocks have been assigned to regions in the partitioning template, a congestion-balancing step is undertaken. Note that a typical set of partitions can have many 'thumbnails (see Figure 5). The objective of the congestion-balancing step is to assign one of the possible thumbnail alternatives to each net in a manner that minimizes the maximum number of thumbnails having edges that cross the same cut-line of the partitioning template. Since this problem is NPcomplete [13], it is accomplished using a greedy heuristic.

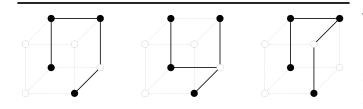


Figure 5: Three possible thumbnails for interconnecting the four dark-shaded nodes shown. Unshaded nodes represent possible Steiner nodes.

Next, every edge in each thumbnail must be assigned to a specific switch block along the crossed cut-line of the partitioning template. Each such switch block is conceptually added as a new "virtual" pin in the net. The portion of each net within each region of the partitioning template is then passed on to a lower level of the recursion (this is akin to the *virtual terminal* [6] and *terminal propagation* [12] techniques). Assignments are made using a minimum-bipartite-matching heuristic, where one set of nodes represent all nets crossing a cut-line, and the other node set represents the switch boxes on that cut-line. The recursion terminates when a region contains at most one logic block. Minimizing thumbnails for each net while balancing overall congestion produces routable placements.

5 Three-Dimensional FPGA Routing

After the placement phase, all portions of the design logic have been assigned to specific logic blocks on the FPGA. It is now the task of the router to interconnect the pins of each net. The routing phase models the FPGA as a graph, where the overall graph topology mirrors the complete FPGA architecture. Paths in this graph correspond to feasible routes on the FPGA, and conversely (See Figure 6). Nets are routed one at a time, using a move-to-front heuristic when infeasibility is encountered.

Routing each net on the FPGA corresponds to the graph version of the Steiner problem: given a graph

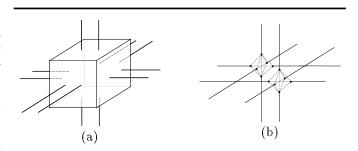


Figure 6: A section of the routing graph showing (a) a 3D FPGA switch box, and (b) the corresponding portion of the routing graph.

G = (V, E), where V is the node set and $E \subseteq V \times V$ is a set of weighted edges, we must span a subset of the nodes $N \subseteq V$ (i.e., the net), while the remaining nodes may be used as Steiner points. Each edge $e_{ij} \in E$ has a weight w_{ij} corresponding to interconnect distance, and our goal is to minimize the total spanning cost. The graph Steiner problem is formally defined as follows:

The Graph Steiner Minimum Tree (GSMT) problem: Given a weighted graph G = (V, E) and a net of terminals $N \subseteq V$ to interconnect, find a tree T' = (V', E')with $N \subseteq V' \subseteq V$ and $E' \subseteq E$ such that $\sum_{e_{ij} \in E'} w_{ij}$ is minimized.

The GSMT problem is NP-complete [17]; we therefore employ the Iterated-KMB (IKMB) heuristic of [3] and adapt it to routing in three dimensions. The IKMB algorithm in turn uses the heuristic of [21] (which we call "KMB") to efficiently search for solutions of increasing quality. Given a graph G = (V, E), the net $N \subseteq V$, and a set S of potential Steiner points, we define the following:

$$\Delta \overline{\mathrm{KMB}}_G(N,S) = \overline{\mathrm{KMB}}_G(N) - \overline{\mathrm{KMB}}_G(N \cup S)$$

The IKMB algorithm starts by computing the KMB tree. Then, at each iteration the IKMB method repeatedly finds additional Steiner node candidates that reduce the overall KMB cost and includes them into the growing set of Steiner nodes S (see Figure 8). The cost of the KMB tree over $N \cup S$ will decrease with each added node, and the construction terminates when there is no $x \in V$ with $\Delta \overline{\text{KMB}}(N \cup S, \{x\}) > 0$. The IKMB method is formally described in Figure 7.

The IKMB algorithm mirrors the Iterated 1-Steiner method [15] [18] and is quite effective in reducing total interconnect length for 2D FPGAs [5]. Our experimental results indicate that IKMB is also effective for 3D FPGAs (see Section 6). Figure 8 shows how introducing Steiner points into the routing solution can reduce total interconnect length.

Circuit	Placement	Tota	Interconnec	t	Channel Width					
Name	algorithm	Random	om Mondrian $\Delta\%$		Random	Mondrian	$\Delta\%$			
9symml	Mondrian	1057	627	40.7	6	7	-16.7			
2large	Mondrian	2481	1462	41.1	9	7	22.2			
alu2	Mondrian	2143	1533	28.5	8	7	12.5			
apex7	Mondrian	1468	737	49.8	6	7	-16.7			
example2	Mondrian	2286	1624	29.0	8	7	12.5			
term1	Mondrian	1119	447	60.1	5	7	-40.0			
	Totals:	10554	6430	39.1	42	42	0.0			
9symml	Mondrian + 2-OPT-PAIR	857	661	22.9	6	7	-16.7			
2large	Mondrian + 2-OPT-PAIR	2195	1464	33.3	9	7	22.2			
alu2	Mondrian + 2-OPT-PAIR	1936	1533	20.8	8	7	12.5			
apex7	Mondrian + 2-OPT-PAIR	1400	741	47.1	6	7	-16.7			
example2	Mondrian + 2-OPT-PAIR	2040	1597	21.7	8	7	12.5			
term1	Mondrian + 2-OPT-PAIR	829	450	45.7	6	7	-16.7			
	Totals:	9257	6446	30.4	43	42	2.4			
	÷									
9symml	Mondrian + 2-OPT-FIRST-a	606	583	3.8	8	6	25.0			
2large	Mondrian + 2-OPT-FIRST-a	1479	1412	4.5	7	6	14.3			
alu2	Mondrian + 2-OPT-FIRST-a	1290	1282	0.6	7	6	14.3			
apex7	Mondrian + 2-OPT-FIRST-a	735	726	1.2	6	6	0.0			
example2	Mondrian + 2-OPT-FIRST-a	1270	1265	0.4	7	7	0.0			
term1	Mondrian + 2-OPT-FIRST-a	479	452	5.6	6	6	0.0			
	Totals:	5859	5720	2.4	41	37	9.8			
	±									
9symml	Mondrian + 2-OPT-FIRST-b	606	583	3.8	8	6	25.0			
2large	Mondrian + 2-OPT-FIRST-b	1479	1412	4.5	7	6	14.3			
alu2	Mondrian + 2-OPT-FIRST-b	1290	1282	0.6	7	6	14.3			
apex7	Mondrian $+$ 2-OPT-FIRST-b	797	713	10.5	6	6	0.0			
example2	Mondrian $+$ 2-OPT-FIRST-b	1270	1265	0.4	7	7	0.0			
term1	Mondrian $+$ 2-OPT-FIRST-b	479	452	5.6	6	6	0.0			
	Totals:	5921	5707	3.6	41	37	9.8			
	Overall Totals:	31591	24303	23.1	167	158	5.4			

Table 1: The effects of three-dimensional Mondrian placement on total interconnect length and minimum channel width of several benchmark circuits. The percentages indicate the performance of Mondrian with respect to random placements (positive values indicate improvement, while negative percentages indicate disimprovement).

The Iterated-KMB (IKMB) Algorithm					
Input: A weighted graph $G = (V, E)$ and net $N \subseteq V$ Output: A low-cost tree spanning N					
Output: A low-cost tree spanning \hat{N}					
$S = \emptyset$					
While					
$C = \{x \in V - N \Delta \overline{\mathrm{KMB}}_G(N \cup S, \{x\}) > 0\} \neq \emptyset$					
Do					
Find $x \in C$ with maximum $\Delta \overline{\text{KMB}}_G(N \cup S, \{x\})$					
$S = S \cup \{x\}$					
Return $\text{KMB}_G(N \cup S)$					

Figure 7: Iterated-KMB algorithm (IKMB).

6 Experimental Results

Our placement and routing algorithms were implemented using C++ in the SUN Unix environment. We considered 6 large industrial benchmark circuits frequently used to evaluate FPGA routers [22].

Each circuit was first placed using the Mondrian method, and then the placement was further refined using a 2-OPT post-processing step. The various 2-OPT methods we used were as follows: (i) 2-OPT-PAIR, which starts by making the best swap possible, and then "follows" those two blocks, making any beneficial swap involving one of them; (ii) 2-OPT-FIRST-a, which makes the first beneficial swap found, and continues to do so until the number of swaps made exceeds the square of the number of blocks; and (iii) 2-OPT-FIRST-b, which is similar to 2-OPT-FIRST-a but runs until no possible swap would result in a savings of more than 1%. For comparison purposes, we also tested our tool on random placements (post-processed by greedily swapping pairs of blocks). Thus, we

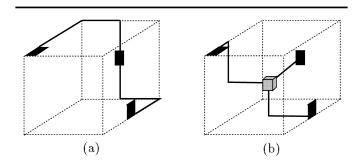


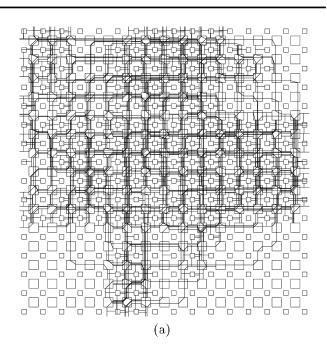
Figure 8: Example of routing solutions for a single 3-pin net (dark blocks represent pins), produced by (a) the KMB algorithm, and (b) the IKMB algorithm. The shaded switch block in (b) serves as a Steiner point to reduce overall interconnect length by about 16% in this case.

benchmarked eight types of placements: (i) random, (ii) random followed by (three distinct kinds of) 2-OPT post-processing , (iii) Mondrian, and (iv) Mondrian followed by (three distinct kinds of) 2-OPT post-processing.

Table 1 shows the total interconnect length and the minimum channel width for each benchmark circuit. The results indicate that our placement algorithm generated 23.1% savings in total interconnect length over random placements. The overall improvement in minimum channel widths is 5.4%. Our Mondrian placement algorithm tends to draw logic blocks closer together, thus minimizing total interconnect length (in certain cases, this can increase the minimum channel width required to route the circuit).

Table 2 shows the average interconnect length per net, the average number of programmable switches required to route a net, and the average maximum source-sink pathlength (i.e., *radius*). As expected from the analysis in Section 3, the increased switching flexibility in three dimensions decreases all of these values. Our results indicate a reduction of 13.8% in average interconnect length, 23.0% savings in average switch block usage, and 26.4% reduction in average source-sink path-length. These results are encouraging with respect to interconnect delay minimization in three-dimensional FPGAs (as compared to their two-dimensional counterparts). Figure 9(a) illustrates a 2D layout of one of the benchmark circuits (ALU2), while Figure 9(b) shows the layout of the same circuit on a 3D FPGA.

7 Conclusions


We have presented an effective physical layout framework for a new three-dimensional FPGA architecture. For placement, we have used a top-down partitioning technique based on optimal rectilinear Steiner trees, and for routing we developed a graph-based one-step router to produce a final layout. Our experimental results indicate that our approach produces effective 3D layouts, using considerably less interconnect than is required with conventional 2D FPGAs of comparable size.

References

- Y. AKASAKA, Three-Dimensional IC Trends, Proc. IEEE, 74 (1986), pp. 1703-1714.
- [2] M. J. ALEXANDER, J. P. COHOON, J. L. COLEFLESH, J. KARRO, AND G. ROBINS, *Three-Dimensional Field-Programmable Gate Arrays*, in Proc. IEEE Intl. ASIC Conf., Austin, TX, September 1995, pp. 253–256.
- [3] M. J. ALEXANDER, J. P. COHOON, J. L. GANLEY, AND G. ROBINS, An Architecture-Independent Approach to FPGA Routing Based on Multi-Weighted Graphs, in Proc. European Design Automation Conf., Grenoble, France, September 1994, pp. 259–264.
- [4] M. J. ALEXANDER, J. P. COHOON, J. L. GANLEY, AND G. ROBINS, Performance-Oriented Placement and Routing for Field-Programmable Gate Arrays, in Proc. European Design Automation Conf., Brighton, England, September 1995, pp. 80–85.
- [5] M. J. ALEXANDER AND G. ROBINS, New Performance-Driven FPGA Routing Algorithms, in Proc. ACM/IEEE Design Automation Conf., San Francisco, CA, June 1995, pp. 562-567.
- [6] S. BAPAT AND J. P. COHOON, A Parallel VLSI Circuit Layout Methodology, in Proc. IEEE Intl. Conf. VLSI Design, January 1993, pp. 236-241.
- [7] D. M. BREWER AND L. P. BURNETT, MCM Designs Require Exhaustive Thermal Analysis, Electronic Design News, (1992), pp. 96–103.
- [8] S. D. BROWN, R. J. FRANCIS, J. ROSE, AND Z. G. VRANESIC, *Field-Programmable Gate Arrays*, Kluwer Academic Publishers, Boston, MA, 1992.
- [9] P. C. CHAN, Design Automation for Multichip Modules

 Issues and Status, Intl. J. of High Speed Electronics, 2
 (1991), pp. 236–285.
- [10] J. DEPREITERE, H. NEEFS, H. V. MARCK, J. V. CAMPENHOUT, B. D. R. BAETS, H. THIENPONT, AND I. VERETENNICOFF, An Optoelectronic 3-D Field Programmable Gate Array, in Proc. 4th Intl. Workshop on Field-Programmable Logic and Applications, Prague, September 1994.
- [11] I. DOBBELAERE, A. E. GAMAL, D. HOW, AND B. KLEVE-LAND, Field Programmable MCM Systems – Design of an Interconnection Frame, in Custom Integrated Circuits Conf., Boston, MA, 1992, pp. 4.6.1–4.6.4.
- [12] A. E. DUNLOP AND B. W. KERNIGHAN, A Procedure for Placement of Standard-Cell VLSI Circuits, IEEE Trans. Computer-Aided Design, 4 (1985), pp. 92–98.

- [13] J. L. GANLEY, Geometric Interconnection and Placement Algorithms, PhD thesis, Department of Computer Science, University of Virginia, Charlottesville, Virginia, 1995.
- [14] L. GILG, Known Good Die Meets Chip Size Package, IEEE Circuits and Devices Magazine, (1995), pp. 32-37.
- [15] J. GRIFFITH, G. ROBINS, J. S. SALOWE, AND T. ZHANG, Closing the Gap: Near-Optimal Steiner Trees in Polynomial Time, IEEE Trans. Computer-Aided Design, 13 (1994), pp. 1351-1365.
- [16] A. C. HARTER, Three-Dimensional Integrated Circuit Layout, Cambridge University Press, New York, 1991.
- [17] F. K. HWANG, D. S. RICHARDS, AND P. WINTER, The Steiner Tree Problem, North-Holland, 1992.
- [18] A. B. KAHNG AND G. ROBINS, A New Class of Iterative Steiner Tree Heuristics With Good Performance, IEEE Trans. Computer-Aided Design, 11 (1992), pp. 893–902.
- [19] A. B. KAHNG AND G. ROBINS, On Optimal Interconnections for VLSI, Kluwer Academic Publishers, Boston, MA, 1995.
- [20] S. KIRKPATRICK, C. D. GELATT, AND M. P. VECCHI, Optimization by Simulated Annealing: An Experimental Evaluation (part 1), Science, 220 (1983), pp. 671–680.
- [21] L. KOU, G. MARKOWSKY, AND L. BERMAN, A Fast Algorithm for Steiner Trees, Acta Informatica, 15 (1981), pp. 141-145.
- [22] G. G. LEMIEUX AND S. D. BROWN, A Detailed Routing Algorithm for Allocating Wire Segments in Field-Programmable Gate Arrays, in Proc. ACM/SIGDA Physical Design Workshop, Lake Arrowhead, CA, April 1993.
- [23] D. MALINIAK, Chip-Scale Packages Bridge the Gap Between Bare Die and BGAs, Electronic Design, (1995), pp. 65-73.
- [24] J. ROSE, R. J. FRANCIS, D. LEWIS, AND P. CHOW, Architecture of Field-Programmable Gate Arrays: The Effect of Logic Block Functionality on Area Efficiency, IEEE J. Solid State Circuits, 25 (1990), pp. 1217–1225.
- [25] S. M. TRIMBERGER, Field-Programmable Gate Array Technology, S. M. Trimberger, editor, Kluwer Academic Publishers, Boston, MA, 1994.
- [26] J. R. V. MAHESHWARI, J. DARNAUER AND W. W.-M. DAI, Design of FPGAs with Area I/O for Field Programmable MCM, in Proc. ACM/SIGDA Intl. Symposium on Field-Programmable Gate Arrays, 1995.
- [27] XILINX, The Programmable Gate Array Data Book, Xilinx, Inc., San Jose, California, 1994.
- [28] M. YASUNAGA, S. BABA, M. MATSUO, H. MATSUSHIMA, S. NAKAO, AND T. TACHIKAWA, *Chip Scale Packages:* "A Lightly dressed LSI Chip", IEEE Trans. on Components, Packaging and and Manufacturing Tech., 18 (1995), pp. 451-457.

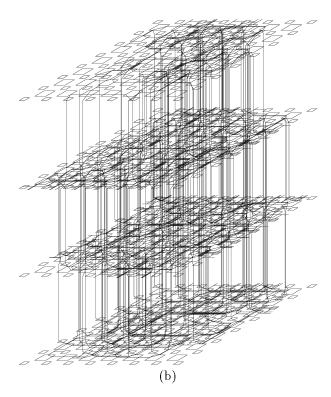


Figure 9: Final layout of circuit ALU2 on (a) 16×16 2D FPGA, and on (b) $4 \times 8 \times 8$ 3D FPGA. Placement was done using Mondrian without 2-OPT post-processing in both cases.

Circuit	#	Placement	Avg.	Net Le	angth	Ava	Avg. # Switches			Avg. Radius		
Name	Nets	algorithm	$\frac{A \text{vg.}}{2 \text{D}}$	3D	$\Delta\%$	2D	$\frac{1}{3D}$	$\Delta\%$	2D	$\frac{g. \text{ nau}}{3D}$	$\Delta\%$	
Name	nets	algorithin	2D	5D	$\Delta / 0$	_ 2D	<u> </u>	$\Delta / 0$	2D	3D	$\Delta / 0$	
9svmml	79	Random	18.9	13.4	29.1	17.5	12.4	29.1	14.8	9.4	36.7	
2large	186	Random	10.3 19.7	13.3 13.3	$\frac{23.1}{32.4}$	18.3	12.1 12.2	$\frac{23.1}{33.4}$	14.0 16.0	$\frac{9.4}{10.5}$	34.4	
alu2	$150 \\ 153$	Random	20.8	13.3 14.0	$\frac{32.4}{32.6}$	10.3 19.1	$\frac{12.2}{12.8}$	$\frac{33.4}{32.8}$	10.0 16.4	$\frac{10.3}{10.2}$	38.0	
apex7	115	Random	20.0	12.8	36.3	18.7	11.8	37.1	16.1	10.0	38.1	
example2	205	Random	16.8	11.2	33.6	15.5	10.0	35.2	14.5	9.2	36.7	
term1	88	Random	18.5	12.7	31.4	17.2	11.57	32.8	15.7	10.4	33.6	
		Averages:	19.1	12.9	32.5	17.7	11.8	33.3	15.6	10.0	35.9	
	— •								1 4 0 0 1		~ ~ ~	
9symml	79	Random + 2-OPT-PAIR	13.3	10.9	18.5	12.0	9.9	17.3	10.8	7.9	27.0	
2large	186	Random $+$ 2-OPT-PAIR	18.2	11.8	35.0	16.7	10.6	36.3	14.7	9.2	37.1	
alu2	153	Random + 2-OPT-PAIR	19.4	12.7	34.8	17.8	11.6	34.7	15.3	9.1	40.6	
apex7	115	Random $+$ 2-OPT-PAIR	19.2	12.2	36.4	17.9	11.1	37.9	15.8	9.6	38.9	
example2	205	Random + 2-OPT-PAIR	13.8	10.0	27.8	12.5	8.9	29.3	12.1	8.4	30.2	
term1	88	Random + 2-OPT-PAIR	13.2	9.4	28.7	12.0	8.4	29.8	11.0	7.8	29.0	
	1 1	Averages:	16.2	11.2	30.9	14.8	10.1	31.8	13.3	8.7	34.6	
											1	
9symml	79	Random + 2-OPT-FIRST-a	8.9	7.7	14.2	7.6	6.8	11.0	6.6	5.7	13.0	
2large	186	Random + 2-OPT-FIRST-a	10.5	7.9	24.2	9.1	6.9	23.6	8.5	6.1	28.8	
alu2	153	Random + 2-OPT-FIRST-a	10.6	8.4	20.7	9.1	7.5	17.3	7.9	6.1	22.7	
apex7	115	$\frac{1}{\text{Random} + 2 \cdot \text{OPT-FIRST-a}}$	7.9	6.4	19.2	6.7	5.6	16.0	6.7	$\frac{5.1}{5.1}$	22.6	
example2	205	111111111111111111111111111111111111	6.9	6.2	19.2 10.3	5.7	5.3	$\frac{10.0}{7.0}$	5.8	$\frac{5.1}{5.1}$	$\frac{22.0}{11.5}$	
term1	88	Random $+ 2$ -OPT-FIRST-a	6.0	$\frac{0.2}{5.4}$	8.6	4.8	4.7	1.4	5.0	$\frac{3.1}{4.5}$	9.5	
161111	00		8.5		$\frac{0.0}{17.6}$	$\frac{4.0}{7.2}$		$1.4 \\ 15.3$	$\frac{5.0}{6.8}$		$\frac{9.5}{20.6}$	
L		Averages:	0.0	7.0	11.0	1.4	6.1	19.9	0.0	5.4	20.0	
9symml	79	Random + 2-OPT-FIRST-b	8.9	7.7	14.2	7.6	6.8	11.0	6.6	5.7	13.0	
	186	$\frac{1}{1} \frac{1}{1} \frac{1}$	10.5	7.9	$\frac{14.2}{24.2}$	9.1	6.9	$\frac{11.0}{23.6}$	8.5	$\frac{5.1}{6.1}$	$\frac{13.0}{28.8}$	
2large		$\frac{1}{2}$ Random + 2-OF 1-FIRS1-D		8.4								
alu2	153	Random + 2-OPT-FIRST-b	10.6		20.7	9.1	7.5	17.3	7.9	6.1	22.7	
apex7	115	Random + 2-OPT-FIRST-b	8.1	6.9	14.1	6.9	6.1	10.7	7.0	5.5	20.6	
example2	205	Random + 2-OPT-FIRST-b	6.9	6.2	10.3	5.7	5.3	7.0	5.8	5.1	11.5	
term1	88	Random $+ 2$ -OPT-FIRST-b	6.0	5.4	8.6	4.8	4.7	1.4	5.0	4.5	9.5	
		Averages:	8.5	7.1	16.5	7.2	6.2	13.9	6.8	5.5	19.1	
9symml	79	Mondrian	11.0	7.9	27.9	9.7	7.1	27.1	8.2	5.6	31.8	
2large	186	Mondrian	9.9	7.9	20.9	8.5	6.7	21.6	7.8	5.9	25.1	
alu2	153	Mondrian	10.8	10.0	7.1	9.3	8.8	5.0	7.8	7.2	7.2	
apex7	115	Mondrian	10.6	6.4	39.3	9.3	5.5	40.6	8.9	5.0	44.1	
example2	205	Mondrian	7.1	7.9	-11.4	6.0	6.9	-15.9	6.0	6.4	-7.4	
term1	88	Mondrian	7.2	5.1	29.2	6.0	4.2	29.9	5.8	4.2	27.7	
	11	Averages:	9.4	7.5	20.2	8.1	6.5	19.8	7.4	5.7	23.0	
		8	I		I	I	I					
9symml	79	Mondrian + 2-OPT-PAIR	11.0	8.4	23.9	9.7	7.4	23.6	8.0	5.8	26.8	
2large	186	Mondrian $+$ 2-OPT-PAIR	9.6	7.9	17.6	8.2	6.8	17.1	7.5	5.9	21.4	
alu2	153	Mondrian + 2-OPT-PAIR	10.8	10.0	7.1	9.3	8.9	4.9	7.8	7.1	8.5	
apex7	115	Mondrian + 2-OPT-PAIR	10.5	6.4	38.4	9.2	5.5	39.8	8.8	5.0	42.5	
example2	205	$\frac{1}{10000000000000000000000000000000000$	7.3	7.8	-7.4	6.1	6.8	-11.9	6.1	6.5	-6.9	
term1	88	Mondrian + 2-OPT-PAIR	7.2	5.1	29.2	6.1	4.3	29.3	6.0	4.3	28.9	
	00		9.4	7.6	$\frac{29.2}{19.1}$	8.1	6.6	$\frac{29.5}{18.5}$	7.4	$\frac{4.5}{5.8}$	$\frac{20.5}{21.6}$	
L		Averages:	3.4	1.0	13.1	0.1	0.0	10.0	1.4	0.0	41.0	
9symml	70	Mondrian + 2-OPT-FIRST-a	8.8	7.4	15.9	7.4	6.5	12.3	6.5	5.2	20.3	
2large	186	$\frac{\text{Mondrian} + 2\text{-}\text{OPT-FIRST-a}}{\text{Mondrian} + 2\text{-}\text{OPT-FIRST-a}}$	8.7	7.6	13.9 12.7	7.4	$\frac{0.5}{6.5}$	$\frac{12.3}{12.2}$	6.8	$\frac{5.2}{5.8}$	$\frac{20.3}{14.4}$	
		Mondrian + 2 OPT FIRST-a										
alu2	153	Mondrian + 2-OPT-FIRST-a	9.3	8.4	10.0	7.9	7.4	6.2	7.0	5.9	15.2	
apex7	115	Mondrian + 2-OPT-FIRST-a	7.9	6.3	19.8	6.6	5.4	18.2	6.4	4.9	23.0	
example2	205	Mondrian + 2-OPT-FIRST-a	6.3	6.2	1.5	5.1	5.2	-1.7	5.3	5.2	$\frac{2.2}{10.1}$	
term1	88	Mondrian + 2-OPT-FIRST-a	5.8	5.1	12.1	4.7	4.2	11.3	4.9	4.4	10.1	
		Averages:	7.8	6.8	12.8	6.5	5.9	9.2	6.2	5.2	16.1	
										.		
9symml	79	Mondrian + 2-OPT-FIRST-b	8.8	7.4	15.9	7.4	6.5	12.3	6.5	5.2	20.3	
2large	186	Mondrian $+$ 2-OPT-FIRST-b	8.7	7.6	12.7	7.4	6.5	12.2	6.8	5.8	14.4	
alu2	153	Mondrian $+$ 2-OPT-FIRST-b	9.3	8.4	10.0	7.9	7.4	6.2	7.0	5.9	15.2	
apex7	115	Mondrian $+$ 2-OPT-FIRST-b	9.3	6.2	33.3	8.0	5.2	34.6	7.6	4.8	37.5	
example2	205	Mondrian + 2-OPT-FIRST-b	6.3	6.2	1.5	5.1	5.2	-1.7	5.3	5.2	2.2	
term1	88	Mondrian $+$ 2-OPT-FIRST-b	6.2	5.1	17.2	5.0	4.2	15.8	5.1	4.4	15.0	
		Averages:	8.1	6.8	19.1	6.8	5.8	14.7	6.4	5.2	18.8	
1						a I						
		0										
	Ov	erall Averages:	10.9	8.4	13.8	9.6	7.4	23.0	8.7	6.4	26.4	

Table 2: Average interconnect lengths, number of active switches used in routing a single net, and the maximum source-sink path-length (radius) for the 2D and 3D cases.